Robust and optimal sparse regression for nonlinear PDE models
نویسندگان
چکیده
منابع مشابه
Robust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملRobust Design Strategies for Nonlinear Regression Models
In the context of nonlinear regression models, this paper outlines recent de velopments in design strategies when the assumed model function, initial parameter guesses, and/or error structure are not known with complete certainty. Designs obtained using these strategies are termed robust de signs as they are intended to be robust to specified departures. Robust designs are clearly advantageou...
متن کاملRobust and sparse bridge regression
It is known that when there are heavy-tailed errors or outliers in the response, the least squares methods may fail to produce a reliable estimator. In this paper, we proposed a generalized Huber criterion which is highly flexible and robust for large errors. We applied the new criterion to the bridge regression family, called robust and sparse bridge regression (RSBR). However, to get the RSBR...
متن کاملRobust Complexity Criteria for Nonlinear Regression in Narx Models
Many different methods have been proposed to construct a smooth regression function, including local polynomial estimators, kernel estimators, smoothing splines and LS-SVM estimators. Each of these estimators use hyperparameters. In this paper a robust version for general cost functions based on the Akaike information criterion is proposed.
متن کاملRobust static designs for approximately specified nonlinear regression models
We outline the construction of robust, static designs for nonlinear regression models. The designs are robust in that they afford protection from increases in the mean squared error resulting from misspecifications of the model fitted by the experimenter. This robustness is obtained through a combination of minimax and Bayesian procedures. We first maximize (over a neighborhood of the fitted re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chaos: An Interdisciplinary Journal of Nonlinear Science
سال: 2019
ISSN: 1054-1500,1089-7682
DOI: 10.1063/1.5120861